The Mechanical Control Of Tissue Regeneration and Polarity Re-establishment


Supervising PI

Yanlan Mao (website)

Project Description

Objectives

Investigating the role of mechanical forces in tissue regeneration and polarity re-establishment.

Methodology

We will utilize novel techniques in Drosophila wing disc culture to live-image the regeneration process. We can monitor the cell division, cell shape and cytoskeletal changes by imaging actin (LifeAct-GFP), myosin (Sqh-GFP), adhesion molecules (e.g. E-cadherin-GFP), and changes in polarity complexes (e.g. Lgl-GFP, Scrib-GFP, Baz-mCherry). We will use state-of-the-art laser ablation and microscopy techniques to measure the changes in tension properties of the tissue. We have recently developed a unique tissue stretcher that can be used to culture the disc ex vivo whilst under compression or stretch. This will allow us to answer whether applying an external controlled force can alter the regeneration process and localization of polarity complexes. The aim is to complement experiments by developing a computational model of tissue regeneration. We will use an existing vertex model that our lab has developed, and also collaborate with Nate Goehring to develop new models of mechanical control of polarity establishment. Data from the experimental measurements will be used to parameterize the model, and predictions generated by the model can be tested in vivo – a constant 2-way interplay.

Collaborators

Bellaïche (B3: CURIE), Goehring (B4: CR-UK), van der Voort (PO4: SVI)

Key publications

  1. Mao Y, Tournier AL, Hoppe A, Kester L, Thompson BJ, Tapon N. Differential proliferation rates generate patterns of mechanical tension that orient tissue growth. EMBO J. 2013 Oct 30;32(21):2790–803.
  2. Mao Y, Tournier AL, Bates PA, Gale JE, Tapon N, Thompson BJ. Planar polarization of the atypical myosin Dachs orients cell divisions in Drosophila. Genes Dev. 2011 Jan 15;25(2):131–6.